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Abstract

This paper couples a traditional hedonic model with architectural style classifications from
human experts and machine learning (ML) enabled classifiers to estimate sales price premia over
architectural styles, both at the building and the neighborhood-level. We find statistically and
economically significant price differences for houses from distinct architectural styles across an array
of specifications and modeling assumptions. Comparisons between classifications from ML models
and human experts illustrate the conditions under which ML classifiers may perform at least as
reliable as human experts in mass appraisal models. Hedonic estimates illustrate that the impact of
architectural style on price is attenuated by properties with less well-defined styles and we find no

evidence for differential price effects of Revival or Contemporary architecture for new construction.
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Introduction

In this paper, we introduce a new data collection technique that allows us to rigorously test the notion
that households have strong preferences over architectural styles. Our results indicate that 1) there is
evidence for sales price premia associated with houses from a variety of architectural styles, 2) hedonic
estimates from high confidence machine learning (ML) enabled architectural image classifications are
similar to human expert estimates, and 3) any style premia are found for existing structures only and
not for new buildings, indicating that debates about strong demand for historicizing aesthetics may be

unfounded.

Understanding household preferences for architectural styles is of increasing interest to both policymakers
and researchers. The policy perspective is best illustrated by Britain’s Building Better, Building Beautiful
Commission, which advises the government on design choices for homes and neighborhoods. It lists as
one of its primary aims as “To make the planning system work in support of better design and style, not
against it.” (The Economist 2018) and boldly claims that matching the style of new housing to aggregate
neighborhood preferences should overcome otherwise prevailing objections of incumbent households to

new construction.

Researchers have recently begun to quantify and define what makes for better design and style. Buitelaar
and Schilder (2017) find evidence on the link between preferences over architectural styles and housing
prices using architectural assessments by human experts, and estimate a sizable premium of 5% for
new buildings in the Netherlands that refer to traditional styles and a staggering 15% premium for new
buildings that closely follow traditional shapes, facade composition, and details. Coulson and McMillen
(2008) suggest a non-parametric estimator and establish a U-shaped age function and distinct price
discounts for postwar and contemporary styles (vis-a-vis more historic styles). Francke and van de Minne
(2017) investigate the depreciation of residential real estate in The Netherlands and decompose land versus
structure values singling out the effect of physical deterioration, functional obsolescence, and vintage
effects. They find that buildings from the 1930s carry a strong price premium. These results support
the hypothesis that preferences for house vintages (which coincide with architectural styles) may affect

housing prices.

Clearly, building vintage, quality, location, and architectural styles are highly correlated which implies
that hedonic price estimates for architectural styles cannot simply be understood as marginal prices for
aesthetics. We only interpret our empirical findings as ‘pure’ architectural preferences in few cases where
differences in all other dimensions can be accounted for, e.g. new units at similar locations that have
been built to similar standards and that have not depreciated yet. For markets with more contemporary
housing stocks, differences in functional obsolescence would be a major concern when age and style

variables are correlated. In our case, over 93% of the housing stock had been produced prior to 1980 and



70% before 1940, so concerns on contemporaneous depreciation of new structures may be alleviated as
the vast majority of homes has already depreciated. Nevertheless, systematic differences in locations and

unobservable quality characteristics and modernization standards cannot be ruled out.

Buitelaar and Schilder (2017) indicate that any premium for an architectural style must stem from either
differences in construction prices or from supply constraints, as new construction potentially does not
capture the demand for traditional styles. In markets where home builders are free to decide on the
architectural style of the homes they supply, we would not expect any price effects beyond differences in
construction costs. If there was, for instance, a premium for more traditional styles, developers would
continue to build more of these until all demand is met. Our prior is therefore not to find distinct price

effects of aesthetics for newly supplied homes.

Of course, residential buildings rarely stand in isolation and Ahlfeldt and Mastro (2012) investigate the
influence a building’s architecture exerts on its surroundings. They observe a positive price effect for
residential buildings in the direct proximity of iconic homes by Frank Lloyd Wright in Oak Park, Illinois.
A building’s exterior does not need to be an architectural masterpiece to co-determine the value of other
houses close by. A similarly shaped neighboring building is value-enhancing while proximity to a wildly
different neighboring shape, everything else remaining equal, may be detrimental to property values

(Lindenthal 2020).

In traditional approaches chosen by e.g. Buitelaar and Schilder (2017) or Ahlfeldt and Mastro (2012), each
observation is classified into an architectural style by a human expert, which is time-consuming, costly
and is not feasible for large sample sizes. As Helbich et al. (2013) state, the benefit of using new methods
to observe the built environment is that “essential determinants influencing real estate prices [which]
are constantly missing and are not accessible in official and mass appraiser databases”. This is certainly
the case in our context, as understanding the impact of architectural style on housing prices is made
difficult by the paucity of sales or assessment data that includes architectural style as a characteristic. In
addition, an expert’s views may not fully reflect the market’s perceptions of relevant styles — architectural

classifications and economically relevant segments might differ.

Combining automated Google Street View photo data collection with deep learning/ML image classification
offers a promising way forward to large and comprehensive data sets of architectural style. Naik et al.
(2017) describe how neighborhood demographics may impact the physical appearance of neighborhoods.
Gebru et al. (2017) use classified vehicle make and model information to predict income, race, education,
and voting patterns at the precinct level. Glaeser et al. (2018) predict income in New York City. Naik,
Raskar, and Hidalgo (2016) create a neighborhood safety based Streetscore which is shown to be highly
correlated with neighborhood population density and household income. De Nadai et al. (2016) find that

greenery and street-facing windows contribute to a positive appearance of safety while Liu et al. (2017)



evaluate the quality and upkeep of the built environment along Beijing’s streets.

In contrast to the block, street, or street-section level classifications used in the majority of previous
studies that use automated image classification, Glaeser, Kincaid, and Naik (2018) push the level of
observation to the individual building level. Utilizing images of buildings’ exteriors collected from Google
Street View!, and to a lesser degree interior images from Zillow, they find that looks matter, at least in
Boston: A one standard deviation improvement of a building’s exterior is associated with an additional
USD 70,000 in home value. Intuitively, the link between good looks and value is bi-directional: The
appearance of buildings that went through foreclosure deteriorated significantly (Glaeser, Kincaid, and

Naik 2018).

We follow the framework used by Glaeser, Kincaid, and Naik (2018) and focus on individual buildings as
our unit of observation. This focus unlocks one of the main benefits of using mass collected street-level
imagery in economic research: property characteristics previously deemed “unobservable” can be directly
observed in an increasingly accurate and objective manner and may be implemented in a more efficient,

accessible, and cost-effective way.

In addition to reducing the cost of data collection, the ability for low-cost classification of a large sample of
structures in an urban area enables researchers to detect not only the architectural style of the building but
also to characterize the style of other buildings in the vicinity. This allows us to examine the interaction

between the style of a building and that of its neighbors.

To analyze the accuracy of our method of detecting architectural style, we compare our algorithmic results
with an extensive data set of architectural style classifications compiled by human experts. The relatively
large and costly comparison group provides insights into ML-based classification accuracy and the
robustness of hedonic estimates to human and ML classifications. In addition, the measurable uncertainty
in the ML classifications may also be a useful source of variation to exploit for style identification. For
example, it may be the case that the impact of architectural style on sales price for existing buildings
may be attenuated for buildings that are more difficult to classify. To our knowledge, this step is not
present in the existing literature and provides additional insight into the efficacy of the technique for

application in other domains.

We find evidence that for existing buildings, the architectural style has an impact on the sales price and
that the estimates are very similar for both human expert and high confidence ML classified images. The
price effects of human-expert defined architectural styles are greater in images where there is agreement
with the ML classifications. The presence of architectural style in our hedonic specifications reduces the
RMSE of our models. The preferred architectural style for resales appears to be Revival with Interwar,

Postwar, and Early Victorian commanding the smallest premium. Immediately proximate neighbor styles

Thttps://www.google.co.uk /maps
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also have an impact on sales price, with Contemporary neighborhoods clearly preferred to Georgian,
Early Victorian, and Postwar. Importantly for policymakers, we do not identify a premium for either

Revival or Contemporary styles for new construction.

We begin by describing the traditional hedonic data used in the paper. Second, we describe the
methodology for the automated architectural style classification. Third, we compare the results of the
automated predictions with expert classifications. Next, we present an array of hedonic regressions using
both architect and ML-based classification and discuss results. Finally, we conclude with a discussion of

the policy implications of the estimates and the feasibility of ML-based classification of architectural style.

Data

Residential real estate transactions in England and Wales are collected and published by the Land
Registry (Land Registry 2017). Their records include the date of transaction, the price paid, street
address, a classification of the property type (flat, detached, semi-detached, or terraced house), the
estate type (freehold or leasehold), and an indicator for newly built properties. We select transactions
from Cambridge, England, which were recorded between January 1995 and October 2018, excluding any
leaseholds, apartments and properties classified as type “other”, and sales with prices below £50,000 or in
excess of £2,000,000. Notably, the Land Registry data lack relevant variables such as year of construction,
home and lot size, or similar quality indicators. We, therefore, augment the transaction data with core
hedonic variables from other sources and to control for a variety of building-specific effects that may be

correlated with both sales price and architectural style.

The Ordnance Survey (OS)? provides high-resolution maps that show the two-dimensional footprint of
buildings in the UK. Using these maps, we calculate each building’s floor plate (in m?) and estimate its
volume by combining the building outlines with digital elevation models from the Environment Agency
(2015), as suggested by Lindenthal (2017). Additionally, we measure the distance from each residential
property to the city center, proxied by Great St. Mary’s Church. The Office for National Statistics (2019)
subdivides Cambridge into 69 unique Lower Super Output Areas (LSOA) and we rely on these boundaries
when constructing neighborhood dummy variables. An LSOA typically has 1,000-3,000 residents and
400-1,200 households of comparable economic and socio-demographic characteristics (Office for National

Statistics 2017).

Architectural Style Data

Our main variable of interest, architectural style, follows the classifications commonly used by realtors,

home-buyers, and architects. Styles are distinctive in Cambridge: Table 1 provides a description of the

2https://www.ordnancesurvey.co.uk/
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construction eras and the distinctive motifs for each style as defined by members of the Architecture

Department at the University of Cambridge.
— Insert Table 1 about here —

We aim to collect images of all residential buildings in Cambridge from Street View. Approximately 50,000
buildings found on the OS maps have footprints between 30 and 500 m?2. For 85% of these candidates,
we can download street-level images on Google Street View. However, not all of them turn out to be
residential buildings. A sample of 25,000 of these images is categorized by final year architecture students

into the seven styles.

We can match 23,768 residential properties sold in Cambridge between 1995 and 2019 to images from
Google Street View. We implicitly assume that houses have not changed their architectural styles between
the time of sale and the time Google collected the images. This is a reasonable approach since conversions
of just the exterior of buildings rarely occur. In case of full redevelopments, we exclude any sales for that

address pre-dating the redevelopment, since we cannot rule out a change of style at redevelopment.

Importantly, 15,511 sales can also be matched to the sample of expert’s classifications. Our hedonic models
will be estimated on these observations for which we have predicted and ground truth classifications. This
allows us to assess the prediction accuracy and robustness of the regression results to the classification
approach. When assessing the architectural style of surrounding buildings, we use the full set of all images
collected. Being able to cover almost the universe of all buildings in a market is a clear advantage of an

automated approach.

In Figure 1, we present a set of representative images for each of the 7 architectural styles. These images
come from our automated collection procedure and are a visual representation corresponding to the
expert descriptions in Table 1. Image information here is very useful as it provides a visual mapping from
the style characteristics to actual identification. One component which is evident in the images but not
necessarily in the descriptions is the within style homogeneity of window grouping, relative pane size, and
counts. For example, Georgian windows contain 12 equally sized panes in 4 rows and 3 columns, Early
Victorian windows consist of 4 equally sized panes in 2 rows and 2 columns, Interwar windows contain an
upper smaller pane and larger lower pane. Interestingly, the Revival style demonstrates heterogeneous
window patterns that borrow from the variety of classic architectural styles. We revisit the impact of

image quality and window visibility on prediction accuracy below.

— Insert Figure 1 about here —



Image collection

To provide the best information to detect style for both the architect and ML classifiers, images should
be focused on the structure under examination, have a clear field of view, show minimal picture overlap

with neighboring properties, and minimize potentially confounding issues such as vehicle type.

Unfortunately, in the UK, Google’s Street View API regularly fails to identify the building at a given
address. Instead, the camera location will be in close proximity to the front of the building but aimed
straight ahead and down the center of the road. Fig. 2 (a) presents a typical result from an address level
API. Here, the Google Street View API algorithm fails to accurately capture the front of the building
and the property is not even contained in the photo. For major US cities, the accuracy of Google’s search
results is higher and the Street View camera will pan towards the center of the property parcel. This
makes the photo collection of studies such in U.S urban areas potentially much more straightforward
although the API may result in images that are too 'zoomed out’ resulting in images that may contain

obstructed views, vehicles, and neighboring properties.
— Insert Figure 2 about here —

Our automated image collection algorithm utilizes a sophisticated process of viewshed analysis based on
Ordnance Survey building maps and ML methods to capture images using the best camera locations,
zoom, and angles while accounting for potential obstructions from buildings and trees or vehicles. Thus,
for each property, our goal is to automate the collection of the best possible Street View image for each

property in our sample.

More specifically, we first use OS maps to identify each building’s outline (see Figure 3). Second, we build
a database of all possible Google Street View camera locations using Metadata queries of addresses in the
Ordnance Survey. These metadata queries return the latitude, longitude, and dates of the most recent
panorama photos collected by Google Street View. Next, we use the OS data to assign each property
to the nearest Street View photo location in the metadata database and conduct a viewshed analysis
on surrounding building outlines to assign pan and zoom parameters to find an informative view. The
algorithm allows us to estimate the camera bearing (green line) and zoom factor, based on the fan of the
lines of sight (in blue). The line of sight criteria identifies which exterior walls are visible from the nearest
Street View point and aims away from any wall segments where the direct line of sight is obstructed by
other buildings. A visual example of this algorithm is shown in Figure 3.3. For each property, we then
collect the image at the highest resolution offered by Google’s Street View API* (640x640 color pixels).
We test the robustness of our hedonic models to a variety of image quality concerns in the results section

of the paper.

3Code necessary to replicate the full image capture including metadata capture and viewshed based camera aiming is
available from https://github.com/thies/paper-cambridge-vintages
4https://developers.google.com/maps/documentation/streetview /intro


https://github.com/thies/paper-cambridge-vintages
https://developers.google.com/maps/documentation/streetview/intro

— Insert Figure 3 about here —

Figure 2 (b) shows how the suggested approach can improve the quality of the harvested images. The
new image is focused appropriately on the relevant property, it contains minimal neighbor information.
and the view is not overly obstructed by other structures, greenery, or vehicles. As a result, the image
contains the relevant identifying architectural style characteristics such as a clearly identified roofline,

front door, window panes, and bay window.

Methodology: Style classification

With the images collected, we next focus on training an ML learning model to classify the architectural
style observed in each of the collected Street View images. The first step in building our ML model
is to construct a training data set. Our training data set consists of images from 25,000 randomly
sample properties classified into one of seven different architectural styles by final year students from
the Architecture Department at the University of Cambridge® A sample of 25,000 is much more training
data than is actually needed. By applying transfer learning to an existing image recognition model, we
require less than 250 observations per category to reach saturated training accuracy levels. We use this
“surplus” training data to perform out of sample comparisons between our ML predictions and human
expert classifications. This large set of expert classified data also allows us to perform robustness, and
falsification checks on the hedonic regressions for the 15,369 overlapping observations where we have

transaction data with both human and ML-based style classifications.

Training the model

We simplify the calibration of our architectural style prediction model by utilizing transfer learning.
Transfer learning freezes the parameters from a pre-trained image recognition model, removes the final
steps in the model, and then trains a new model on the vector of outputs from the truncated pre-trained
model to produce new classifications®. Transfer learning methods enable the use of smaller training data
sets and impose a much lower computational burden than traditional deep learning models. For our
purposes, we use the Inception-v3 deep convolutional neural network (Szegedy et al. 2015). Inception-
v3 has been trained for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)?, which
evaluates image classification and object detection algorithms for a wide range of objects. The pre-trained
classifications would allow us to identify pets, vehicles, or people in the pictures — assessing architectural
style, however, is beyond the canned classifiers’ capabilities. To allow for the detection of new objects,

transfer learning techniques strip off the last steps of the model. The output of the original deep learning

5The full set of classified images are available for download at the authors’ websites.
6For examples, see https://www.tensorflow.org/tutorials/images/transfer_ learning
Thttp://image-net.org/challenges/LSVRC/
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model is essentially just a deeply recursive dimension reduction engine that outputs a 2048-dimensional
feature vector for each picture. This feature vector describes the outline shapes, locations, and colors

that were important for the ImageNet classifications.

Glaeser, Kincaid, and Naik (2018) rely on a different ILSVRC competitor, Resnet-101 (He et al. 2016).
They reduce the extracted feature vectors to lower dimensionality (1024 to 100 dimensions) based on
principal component analysis (PCA). In our analysis, we follow a different strategy and actually double
the dimensionality (4096) of our feature vectors by including the feature vector of the closest building
in the sample, which, in most cases, is the direct neighbor. The feature vectors of neighbors have been
collected in exactly the same way as those for other buildings in the sample. Doubling up allows us to
model spatial dependencies in building styles, similar to spatially correlated land cover classifications in

Ghimire, Rogan, and Miller (2010).

Having obtained feature vectors for each image, we train a simple multinomial classifier comprising of 1)
an input layer the size of the feature vectors, e.g. 2048 or 4096, respectively, 2) one dense layer rectified
linear activation function (relu) half the size of the input layer, one subsequent dropout (rate 0.5) layer,
3) one dense layer (relu) a quarter the size of the input layer, 4) one subsequent dropout (rate 0.5) layer,
and 5) the final dense output layer with softmax activation. The dropout layers help avoid overfitting,
thus increasing the generalizability of the predictors. When classifying a building picture, the softmax
activation layer returns a vector of style-scores, each between 0 to 1, that jointly sum up to 1. We
select the style with the highest score as the best estimate.® All classifiers are implemented using the

Keras/Tensorflow APIs?. The computational burden of this rather shallow model design is modest.

Next, we turn to an analysis of the predictive accuracy of the models under a variety of assumptions and

diagnostic tests.

Classification Diagnostics

We use a variety of methods to quantify and explain the variation in ML prediction accuracy under
differing modeling assumptions. First, we report the accuracy of the predictions using a confusion matrix
(a contingency table of true and predicted classifications) that also offers recall, precision, and Fj scores.
Second, we explore how the style classification prediction error is affected by the modeling assumptions.
Third, we test the sensitivity of predictions to variation in the training data. After quantifying the
behavior of the style predictive models, we next turn to describe how image characteristics such as aim
quality affect the accuracy of the classifier. This final analysis should help inform other researchers and

practitioners in best practices for image collection in order to maximize predictive accuracy.

8By not excluding observations where multiple scores are vying for the top rank we retain as many observations as possible
but risk a higher misclassification rate. We examine the role of model ‘confidence’ in the ML Classification Diagnostics
section.

9Keras: https://keras.io/, Tensorflow:https://github.com/tensorflow /tensorflow
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Table 2 contains confusion matrices for two different ML classifiers and a ‘high confidence’ prediction
criteria. Each confusion matrix measures how the ML style predictions compare to the architects’ Panel
A illustrates the predictive performance for an ML model based on an image of both a building and its
nearest neighbor. Panel B includes only the highest confidence predictions from the spatial classifier used

to construct Panel A. Panel C contains predictions from an ML classifier based on a single building image.

Diagonal elements in the confusion matrices represent the count of images where the ML and the
architect agree while off-diagonal elements are cases where the ML misclassifies the style. Consider the
Interwar style in Panel A. There are 5,884 images where the ML correctly classifies the style. For the
Interwar column, the ML incorrectly classifies 38 images as Georgian, 86 as Early Victorian, 213 as Late
Victorian/Edwardian, 514 as Postwar, 101 as Contemporary, and 139 as Revival. Thus, of 6,975 true
Interwar images, the ML misclassifies 1,091 and correctly detects 5,884. Recall measures the ability of
the ML to detect within a given category and is the share of correctly classified images out of the total

for a category. For Interwar the recall rate is then 5,884/6,975=0.84.

Now consider the Interwar row which contains information on all images that the ML classifies as
Interwar. There are 10 Georgians, 46 Early Victorian, 254 Late Victorian/Edwardian, 997 Postwar,
56 Contemporary, and 54 Revival incorrectly classified as Interwar. In total, there are 1,417 images
incorrectly classified as Interwar and 5,884 correctly classified. Thus, 81% of the images classified by the
ML as Interwar are actually Interwar. This is the Precision or the share of buildings predicted to belong
to a category that is actually from the category. The F} — score is the harmonic mean of Precision and

Recall.

Across models, classification error is most likely to occur in styles that occurred in consecutive eras. For
example, in Panel A, 10% of Late Victorian/Edwardian styles are classified as Farly Victorian and 14%
of Georgians are misclassified as Farl Victorian. On the other hand, for distant eras, the misclassification
likelihood is much lower and the ML exhibits less confusion. The more classical Georgian and Early

Victorian styles are each only assigned to Interwar 3% of the time.

Recall, precision scores, and F} scores are higher for the spatial ML classifier shown in Panel A relative to
spatially naive ML classifier in Panel C. Pronounced increases include the increase in recall for Postwar
from 0.61 to 0.71 due to a reduction in Postwar images being incorrectly classified as Interwar. Also

notable is the increase in recall for Revival from 0.58 to 0.67.

Table 2 Panel B is based on the spatially dependent model but only contains classifications where the
maximum ML style prediction score was above 0.8. These ‘high confidence’ ML images improve the
measurable performance of the ML model relative to the full sample. Across styles, F} scores see a
substantial increase. Notably, recall rates for Farly Victorian and Interwar are now above .90 and

Contemporary increases from 0.72 to 0.86. In other words, images that are easier for the ML to classify
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are also the ones where the ML is correct at a higher frequency.

Figure 4 shows the distribution of F} scores from Table 2 across ML modeling assumptions and architectural
styles. This figure demonstrates the benefits of including the neighbor image in our modeling strategy.
In addition, the marginal contribution to the F} score from using a spatial classifier appears to be of a
similar magnitude to that of including only ‘high confidence’ images and greatly improves model accuracy

without the cost of dropping images from the sample.
— Insert Table 2 and Figure 4 about here —

Next, we regress the architects’ style classifications captured by binomial variables D Architects, On a
vector of hedonic variables X, vectors of year Y and neighborhood Loc dummy variables, and the
automatically estimated style ML. The intercept is denoted by a while 8, §, v and A are vectors of
regression coefficients, and € is the error term. These models are estimated both with and without spatial
dependencies and capture the ability of the ML to predict the architect style classifications net of other

hedonic variables.

logit(D architects,i) = e+ BX; + IML; +~Y; + ALoc; + ¢; (1)

The logit regressions are estimated by generalized least squares. For a well-performing classifier, the
0 coefficients will be statistically significant and, more importantly, the Akaike Information Criterion
(AIC) will be relatively low. A summary of AIC results is shown in Table 3. Column 1 (No ML pred.)
contains the AIC for style prediction models based solely on the hedonic variables. Column 2 (Base pred.)
includes both the hedonic variables and the single image (spatially naive) ML. The AIC for all styles
decreases with the inclusion of this ‘base’” ML predictor. In Column 3 (Spatial pred. all), we include
hedonic variables along with the spatially aware ML predictor. Again, the ability to predict improves
across all architectural styles. The improvement is especially notable in the final column (Spatial pred.
high certainty), where the AIC is cut in half for the ‘high certainty’ subsample of the spatial predictors.
As expected, the AIC rankings are consistent with F; rankings in Table 2. By including the hedonic
variables as well as location and time dummies in the regression, we are able to see that building style is
not fully explained by size, volume, location, and building type. The AIC results clearly show that 1) a
model based on hedonic variables alone does not predict actual style as well as a model that includes the

predicted style from the image and 2) subsetting on high confidence ML classified images increases AIC.
— Insert Table 3 about here —

Subsequently, we measure the sensitivity of our predictions to sampling variation in the training data.

This test is only possible due to the extremely high number of training data images. We begin by creating

11



100 models that are calibrated using 250 randomly selected training data images for each style category
in the data set. For each image in the out-of-sample data, we then capture the highest probability style
type prediction. With these predictions, we perform two calculations. First, we utilize these predictions
as an ensemble model and assign the most commonly predicted ML class as the architectural style. For
example, if an image is predicted to be a Georgian architectural style 80 of 100 times (80 “votes”), Early
Victorian 10 times, Late Victorian 5 times, and Revival 5 times the building is assigned the Georgian
style. Second, we use the predictions to generate a Herfindahl index for each image. In the example case

the Herfindahl index for image 7 is calculated as

7 2

tes.

Herf; =Y (me‘s) = 0.8% +0.12 4 0.05% + 0.05% = 0.655 2)
p votesq

The Herfindahl scores for misclassified images (off-diagonal elements in Table 4) indicate are all negative.
This provides strong evidence that high consensus ensemble models are more likely to be accurate than
low consensus models. All off-diagonal elements in the lower panel of Table 4 are negative, suggesting
that, in general, the Herfindahl index is a good predictor of correctly classified images. In other words,

there is less consensus for misclassified images.

The next step examines the objects in each image. This serves two purposes 1) we can gain a better
understanding of how image composition affects our ML prediction accuracy and 2) we can validate
the quality of our automated image collection algorithm. We again turn to ML automation and use an
off-the-shelf object detection algorithm (Inception/Resnet) that can identify broadly defined objects in
images such as trees, vehicles, houses, doors, or windows without any additional training.'® With this
information, we are able to validate the performance of the viewshed collection algorithm according to

several measures.

First, we identify the locations (bounding boxes) of cars, trees, buildings, and windows in each image.
Next, we construct a variety of measures of image quality including house area, share blocked, window

area and image offset.

We measure “house area” as the share of the image that is taken up by the house bounding box.'! Share
blocked measures how obstructed the view of the house is by cars or trees. Recall from the viewshed
exercise that we aim away from structures in order to get a clean line of sight. However, buildings may have
obstructed lines of sight due to greenery, fences, garden walls, or large vehicles that cannot be detected
from the Ordnance Survey maps. A high ‘shared blocked’ image should provide less information for our

ML style classifier and result in lower accuracy. As discussed in the architectural style descriptions, one of

10Tn this case, "faster rcnn inception resnet v2 atrous oidv2", available from https://github.com/tensorflow /models/blob/
master/research/object detection/g3doc/detection model zoo.md
11T more than one house is detected, then the largest of the houses is used as the measure.
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the most important visual differences across architectural styles is window alignment and composition. We
quantify this with the measure ‘window area’ which calculates the share of the image area that contains
windows. We use “image offset” to detect images not collected at an optimal angle or zoom factor. To
quantify this, we calculate the offset between the bounding box for the largest detected building and
the center of the image. 12 Table 5 shows the mean values by architectural style for each of the quality
measures. Overall, Georgian and Contemporary styles have the highest quality scores. Even for Postwar,
our lowest-performing style, the average image contains 64% house with windows taking up 7% of the

image.

We explore the relationship between the image quality measures classification accuracy in Table 6. Panel
A compares the mean values for views obstructed by trees or vehicles for correctly (on-diagonal) and
incorrectly (off-diagonal) classified images. In most cases, the off-diagonal values are positive as obstacles
in the line of sight correlate with a higher likelihood of misclassifications. This helps alleviate concerns
that the style detection model is loading on trees, cars, or other building structures. This also shows that
ML misclassification is more likely to occur when the building is less directly observable. If the house
takes up a larger share of the image (Panel B), misclassifications are reduced (negative differences). The
strongest effect is for the window area, which appears to give valuable cues about a house’s style (Panel
C). Finally, images with houses that are not in the center of the frame tend to be misclassified more
frequently (positive differences in Panel D). In summary, image quality appears to be correlated with

style prediction accuracy.
— Insert Table 5 and Table 6 about here

Summary statistics for the transaction level dataset are shown in Table 7. New construction is only
4% of the sample and terraced and semi-detached residential properties comprise 87% of the sample.
Importantly, based upon architectural style, the residential housing stock in Cambridge is old with only
about 7% of properties from post-1980 eras of Contemporary and Revival architecture. Interestingly, the
two most common architectural styles are the ubiquitous 20th-century styles of Interwar and Postwar
which together make up 55% of all sales. Classical styles such as Georgian, Early Victorian, and Late
Victorian/Edwardian together account for 39% of sales. Neighborhood style shares seem to closely match

the individual style shares which hint at a high degree of architectural style clustering in the city.
— Insert Table 7 about here —

Figure 5 visualizes the spatial distribution of the regression sample. The maps trace Cambridge’s historic
expansion, with Georgian houses clustering in the city center, surrounded by first Farly Victorian then

Late Victorian/Edwardian, Interwar and Postwar homes. Contemporary and Revival, however, are widely

12Higher offset scores may result from either imperfectly defined ordnance building outline data (which may occur with
some frequency), another building obstructing the viewshed algorithm causing the camera to pan or zoom away from the
obstacle, or a tree or car causing a complete view obstruction in which case the algorithm will move to the next best location.
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distributed across Cambridge’s neighborhoods, usually filling in previously undeveloped or brownfield
sites, densifying the city. Neighborhoods might be dominated by a single building style - but only very
few comprise of more than 80% of buildings of one style. These extreme cases are only found in large
Interwar or Postwar expansion areas. Luckily, many more houses from these frequent styles are found in

other neighborhoods, which avoiding excessive multicollinearity between style and neighborhood variables.

— Insert Figure 5 about here —

Hedonic Estimation

The hedonic estimations use both the ML and architect classifications for a variety of direct, robustness,
and falsification tests. Merging the ML classifications with sales data (Land Registry 2017) we estimate a
hedonic regression equation that establishes marginal prices for the building style (similar to Moorhouse
and Smith 1994; Asabere, Hachey, and Grubaugh 1989; Vandell and Lane 1989; Fuerst, McAllister, and

Murray 2011; Plaut and Uzulena 2006), among other characteristics:

In(Price;) = a + fX; + 0Style; + nStyleNeigh, + (Style - StyleNeigh, + vY; + ALoc; +¢;  (3)

Here, the natural logarithm of sales prices is explained by a linear combination of hedonic attributes
described in vector X, vectors of year Y and neighborhood Loc dummy variables and the building’s
estimated Style and the prevailing styles of other buildings in the direct proximity (StyleNeigh).
Style - StyleNeigh is a vector of interaction terms for the building’s and the neighborhood’s dominant
style. The intercept is denoted by « while 3, §, 1, ¢, v and A are vectors of regression coeflicients. € is

the IID error term. Heteroscedasticity robust standard errors will be reported.

Are buildings with different appearances imperfect substitutes catering to multiple groups of households
with distinct style or vintage preferences? For Cambridge, 47% of new supply has been of contemporary
and 36% of or revival style. Estimating Eq. 3 for a subset of newly constructed buildings from these
two styles will show whether construction prices or supply constraints for new homes built according to
different architectural styles prevail — if too few vernacular buildings were built, prices should reflect such
a shortage. Singling out new buildings crucially controls for the otherwise unobserved age and quality of

these buildings, which is tightly intertwined with their aesthetics.

Results

The estimated coefficients from 8 different versions of the hedonic regression specified in Eq.(3) are reported
in Tables 8 and 9. For all models, the hedonic control variables show the expected signs: Negative

coefficients for the relative distance to the city center, discounts for terraced homes and semi-detached
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homes relative to detached houses, positive elasticities for building floor plate, and building volumes
and a price premium for new buildings compared to second-hand homes. Year of sale and neighborhood
dummies control for time effects and local amenities but their coefficients are not reported due to space
constraints. The combination of location dummies and the distance to the city center measure controls

for proximity to the city center within each neighborhood.
— Insert Table 8 about here —

Column (1) in Table 8 presents the estimated regression coefficients for a rudimentary base model:
Hedonic variables, location and time dummies jointly explain more than three-quarters of the variation in

transaction prices and the root mean square error (RMSE) is 0.235.

Adding the architects’ classifications as explanatory variables in Model (2), reduces the RMSE to 0.225
- which is 4 percent lower than the error in (1). The coefficients on the architectural styles reveal an
interesting and intuitive pattern: The base style Contemporary is more expensive than almost all other
styles, which show negative coefficients that are significantly different from 0. A clear pecking order
appears: Postwar exhibits the strongest price discount (—0.22), followed by Interwar (—0.14), and Early
Victorian (—0.13). These discounts are economically and statistically significant. We do not detect
a significant price differential for Georgian and Late Victorian/Edwardian properties, while Revival
architecture appears to command a small premium (+0.04) over homes built in the Contemporary style.
Model (3) uses the ML predictions for the style variables instead of the architect’s expert classifications.
Overall, the style coefficients become more positive relative to the base. It must be the case that there is
a negative correlation between properties incorrectly classified as Contemporary and sales price. This may
result from the disproportionate misclassification of more attractive or higher quality Contemporary to
one of the other styles or less attractive buildings being misclassified as Contemporary. This bias vanishes
in Model (4), which uses only ML classifications of high confidence (at the cost of dropping 1/3 of the
sample). The RMSE creeps slightly up for Models (3) - but is lower for (4) than for the model with the
architect defined style covariates (admittedly, the sample has changed, so the comparison is not fair).
Importantly, Model (4) shows that the ML-based results approximate the architects’ estimates (Model 2)

if the analysis is restricted to high confidence classifications.

Model (5) is a falsification test to investigate if unobservable variables correlated with style are driving
our results. We select all cases in which the experts and the ML classifier disagree (3,063 observations)
and re-estimate Model (2). This basically leaves only the ’difficult to classify’ images. If the correlation
of architectural style with unobserved building quality, age, interior updates, backyard sizes, etc. are
actually driving results then these estimates should be the same as those in Model (2). If, on the other
hand, distinct and easily recognizable architectural style really matters and correlated unobservables are

not driving the results, then these point estimates should be insignificant. Interestingly, the architects’
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(true!) classifications cease to have a strong price effect. All coefficients gravitate towards 0 — even the
significant discount on Postwar is cut in half. Apparently, if exterior styles are more difficult to categorize,
the style classifications might still matter to architects but are less meaningful for buyers and sellers. For
this reason, we base the remaining analysis on the set of high confidence machine observations where the

observable hedonic attributes of architectural style are more clearly defined.

In Model (6), we control for age and quality by selecting only transactions of new homes of either
Contemporary or Revival styles.'® Basically, this contrasts houses that might look different from the
street, having either contemporary or revival facades, but which are all modern homes at their core. All
have been built according to modern specifications, using the same technologies and materials, and only
differ in their appearance. After controlling for location, building characteristics and quality, buyers show

no willingness to pay a premium for Revival architecture.

Exploring the impact of the prominent style of buildings on the same street and within 100 m (StyleNeigh)
of the sales property, we find that the magnitude and significance of the own style estimates in Table 8,
Column 3 and Column 7, are stable and the rank ordering of the style impact is maintained. Neighbor
style does have a small if muted impact on prices. Postwar, Farly Victorian and Interwar buildings
are the least popular neighbors. Other neighbors are economically and statistically insignificant relative
to a Contemporary neighborhood. Importantly, we find no evidence in favor of positive externalities
from revival architecture: the difference between Revival and Contemporary neighbors is not statistically
significant. Everything else equal, buildings within ensembles of Revival do not achieve higher transaction

prices than buildings in more historic areas (as Table 11 will confirm later).

Table 9 presents the ¢ interaction coefficients (Eq. 3) for style-neighboring style combinations. Some
style combinations have insufficient numbers of observations, as tabulated in Table 10, and drop out.
Neighboring styles are compared to the base case of a Contemporary house in a Contemporary street. We
find that after controlling for neighborhood and building style, there is little additional impact from the
building neighborhood interaction terms. The main exception to this rule is the positive impact that
a Georgian style building in a Georgian, Early Victorian, or Late Victorian/Edwardian neighborhood.
The negative (although statistically insignificant) coefficients on dissimilar neighboring styles support a
finding by Lindenthal (2017) that shows that a harmonious match of a building’s shape with its direct

environment may lead to a price premium.
— Insert Table 10, Table 9 and Table 11 about here —

In Table 11, the combined effect of building styles on property values is calculated by adding up the direct,

neighborhood and interaction effects (Tables 8 and 9). When filling in lots in historical neighborhoods,

13The comparison may only be done on these style types as the buildings with the other architectural styles are inherited
from previous eras and are no longer constructed.
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however, a premium for Revival facades over modern designs can be observed (differences in the last
two columns of Table 11). For large scale new construction, however, Revival buildings surrounded by
other historical buildings do not sell at a premium relative to Contemporary buildings in a more modern

setting.

As a final robustness check, we present rerun the pricing models and include with year and neighborhood
(Y x Loc) interaction effects. The main limitation of introducing the interaction is that we do not have
enough observations to run Model (5) and which was based on the set of new constructions due to the

limited sample size. The results are shown in Table 12.

— Insert Table 12 about here —

Conclusion

In this paper, we study the relationship between architectural style and residential sales price. We present
evidence for economically significant price differences between buildings from different architectural styles
— but not for architectural style on its own. Analyzing house transaction prices from Cambridge, we find
that any marginal price estimates are very similar for classifications by both human experts and confident
ML classifiers. The preferred architectural style for resales appears to be Revival with Interwar, Postwar,
and Farly Victorian commanding the smallest premium. Immediately proximate neighbor styles also
have an impact on sales price, with Contemporary neighborhoods clearly preferred to Georgian, Early
Victorian, and Postwar. The effects are much more strong in images where architectural style is easily

defined.

Importantly, for policymakers, we do not identify a premium on either Revival or Contemporary styles
for new construction. After accounting for building quality and location, which tend to be better for
older vintages, no evidence for a premium for historicizing architecture emerges from data on newly built
homes. Observing the real-life choices made by home-buyers is more informative than any debate of

aesthetics fueled by newspaper columnists, think tanks, or ideological beliefs in general.

Our analysis also highlights that it is very helpful to collect and analyze property images taken from
the street perspective. This may be especially useful in contexts such as ours where traditional hedonic
data is thin or in applications where predictive power is the goal. Admittedly, estimating just the age of
properties will not add much to many datasets outside the UK. Typically, the year of construction is part
of both commercial and housing data already. However, automatic valuation models or hedonic models
could improve by inserting architectural style, separate from age. In addition, other variables such as
asset uniqueness, upkeep of the exterior, amount of greenery, presence of architectural features, some

indicators of energy efficiency, type and intensity of usage and much more could be derived from images.
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We are certain that more studies will tap into street-level images as an ubiquitous and powerful data

source.

On the more technical side, this paper offers four contributions: First, it introduces an algorithm that
collects pictures of individual buildings from Google Street View. Earlier work has not achieved this
level of detail and was, at least in the UK, limited to street sections only. A large-scale application of
automatic classification of individual buildings’ characteristics using Google Street View has potential
not only in the UK. The image collection and classification method can easily be ported to other study
areas that have existing Street View data and either LIDAR based building outlines or high-resolution
satellite images. In a follow-up project, we are working on an improved classification workflow in which a
customized object detection model is able to recognize specific building outlines without the need for

additional maps or other data.

Second, we developed a new database of 25,000 building pictures that have been classified by architec-
ture experts into relevant architectural styles. We subsequently trained a neural network classifier to
automatically classify all residential buildings of a mid-sized English city into architectural styles. The
suggested classifier is trained on feature vectors of buildings and their nearest neighbors to exploit spatial
correlation in observed classifications. The large ground truth data set allows for a comparison of human
expert versus machine classifications. Poor image quality, caused by obstructed views or the lack of
informative features such as windows, is correlated with misclassifications. Importantly, for cases in which
the ML classifiers are relatively indecisive between classes, the hedonic estimates of architect classified
styles are attenuated. A follow-up study could investigate which elements in the building pictures lead to
the misclassifications (Ribeiro, Singh, and Guestrin 2016). Given the danger of systematic biases, one
should remain wary of ML estimates derived from data sets sizable enough to train models — but too

small to investigate any biases.

Third, we explore how spatial dependencies in image classifications can be exploited in deep neural
networks. Including information from neighboring houses improves the predictive power of the image

classifier significantly.

The last contribution is more practical. We investigate how prediction accuracy is influenced by the
image quality and find the obvious: Obstructions in the line-of-sight such as trees or cars make pictures
of houses less informative. Future research could utilize building images taken from multiple angles to
circumvent obstacles and to arrive at more reliable classifications. Street-level images are an excitingly

rich data source for urban economics and real estate research — it just takes a bit of effort to tap into it.
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Tables and Figures

Table 1: Architectural Style Descriptions

Style

Era

Characteristics

Georgian

Early Victorian

Late Victorian/Edwardian

Interwar

Postwar

Contemporary

Revival

c1714-1837

c1837-¢1870s

c1870s-1910

1918-1939

1950-1980

1980 - present

sash windows, fan lights above doors, stucco on facades,
wrought work grilles and railings

elaborate features such as carved barge boards or finials.
sash windows more affordable and wider

substantial bay windows,
heterogeneous ornamentation, stained glass

cost of building construction falls,
Distinctive two-pane windows

embrace of high-rise as well as low-rise housing. Facades
vary between brick, tiling, pebbledash and render.

innovative and distinctive building techniques

contemporary buildings that emulate historic,
mostly replica Victorian architecture

Notes: Prepared by members the Architecture Department at the University of Cambridge.
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Figure 1: Examples of Architectural Styles

Early Vic. LateV/Ed  Interwar Postwar Contemp.  Revival

Notes: In these images, it is clear that much of the visual heterogeneity in style is due
to differences in windows, doors, and rooflines. For example, there are clear differences
across styles based on groupings and number of panes per windows and shapes of pediments,
lintels, or fanlights above doors. Some characteristics stand out such as the presence of bay
windows for Late V./Edwardian properties and angularity, asymmetry of windows in the
Contemporary class, and roofing style and setback in the Postwar period.
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Figure 2: Improving Camera Aim for Automatic Image Collections

Google

(a) Default Camera Aim (b) Improved Aim

Notes: For the UK, the Google Street View API returns the coordinates of the nearest camera
snapshot for a given location but fails to provide an accurate orientation and zoom-level of the
camera needed to capture the front of the building exactly. In (a) the building of interest is not
even visible in the picture. The image at (b) was taken with pan and zoom parameters, derived by
our viewshed algorithm. Even for a terraced property, the structure contains minimal neighbor
information, the roofline is captured, vehicles on the street are not visible the image is not obstructed
by other structures. Image source: Google Street View.
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Figure 3: Image Collection on Google Street View: Camera Direction and Zoom

Notes: We first look up the nearest Google Street View panorama point (green dot) based on
the centroid (red dot) coordinates of a given building obtained from Ordnance Survey maps. A
viewshed analysis identifies which exterior walls are visible from the panorama point, ignoring
any wall segments where the direct line of sight from the panorama point is obstructed by other
buildings. The camera bearing (green line) and zoom factor are based on the angle of the most
outer lines of sight (blue lines).
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Table 2: Confusion matrix for classification based on images of property and its nearest neighbor

Panel A: Model based on individual building and nearest neighbor

ML Architects

Georgian  Early Vic. Late V./Edw. Interwar Postwar Cont. Revival
Georgian 284 109 s 38 14 23 22
Early Vic. 50 1755 427 86 86 56 34
Late V./Edw. 10 172 3260 213 56 21 29
Interwar 10 46 254 5884 997 56 54
Postwar 1 17 48 514 3914 74 40
Cont. 3 50 63 101 333 855 69
Revival 3 29 45 139 145 98 501
Georgian 79% 5% 2% 1% 0% 2% 3%
Early Vic. 14% 81% 10% 1% 2% 5% 5%
Late V./Edw. 3% 8% 78% 3% 1% 2% 4%
Interwar 3% 2% 6% 84% 18% 5% 7%
Postwar 0% 1% 1% 7% 1% 6% 5%
Cont. 1% 2% 2% 1% 6% 2% 9%
Revival 1% 1% 1% 2% 3% 8% 67%
Recall 0.79 0.81 0.78 0.84 0.71 0.72 0.67
Precision 0.50 0.70 0.87 0.81 0.85 0.58 0.52
F1-score 0.61 0.75 0.82 0.82 0.77 0.64 0.59

Panel B: Model based on individual building and nearest neighbor, high confidence only

Georgian 122 31 9 4 2 1 5
Early Vic. 30 1,926 324 19 40 15 7
Late V./Edw. 0 105 2,941 68 19 0 9
Interwar 6 6 81 3,230 369 10 14
Postwar 0 3 5 96 1,831 9 6
Cont. 0 8 7 4 33 236 18
Revival 3 2 0 14 10 4 154
Georgian 76% 2% 0% 0% 0% 0% 2%
Early Vic. 19% 93% 10% 1% 2% 6% 3%
Late V./Edw. 0% 5% 87% 2% 1% 0% 4%
Interwar 4% 0% 2% 94% 16% 4% 7%
Postwar 0% 0% 0% 3% 80% 3% 3%
Cont. 0% 0% 0% 0% 1% 86% 9%
Revival 2% 0% 0% 0% 0% 2% 2%
Recall 0.76 0.93 0.87 0.94 0.79 0.86 0.72
Precision 0.70 0.82 0.94 0.87 0.94 0.77 0.82
Fi-score 0.73 0.87 0.90 0.90 0.86 0.81 0.77

Panel C: Model based on individual buildings only

Georgian 267 121 110 46 33 36 17
Early.Vic. 50 1673 438 112 107 63 52
Late V./Edw. 19 183 3099 272 86 33 44
Interwar 12 71 335 5786 1419 84 82
Postwar 2 24 56 462 3364 75 38
Cont. 5 63 82 141 366 778 79
Revival 6 43 54 156 170 114 437
Georgian 74% 6% 3% 1% 1% 3% 2%
Early.Vic. 14% 7% 10% 2% 2% 5% 7%
Late V./Edw. 5% 8% 74% 4% 2% 3% 6%
Interwar 3% 3% 8% 83% 26% 7% 11%
Postwar 1% 1% 1% 7% 61% 6% 5%
Cont. 1% 3% 2% 2% 7% 66% 11%
Revival 2% 2% 1% 2% 3% 10% 58%
Recall 0.74 0.77 0.74 0.83 0.61 0.66 0.58
Precision 0.42 0.67 0.83 0.74 0.84 0.51 0.45
F-score 0.54 0.72 0.78 0.78 0.70 0.58 0.51

Notes: Cross-tabulation of out-of-sample predictions by the ML versus the architects’ classification. Recall is the share
of buildings from an architects’ category being predicted correctly (diagonal in mid panel) and Precision is the share of
buildings predicted to belong to a category that are indeed from that category. F}-scores are the harmonic mean of Precision
and Recall: Fi-score = 2 Recall * Precision / (Recall 4 Precision).
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Table 3: ML classifications as dependent variables (Eq. 1 AIC comparison)

No ML pred. Base pred. Spatial pred., all — Spatial pred., high certainty

Georgian 1,282 1,052 1,037 714
Early Victorian 10,231 7,597 7,259 4,594
Late Vic./Edw. 16,204 11,059 10,491 6,173
Interwar 18,333 14,471 13,637 7,670
Postwar 16,845 14,873 14,648 7,613
Contemporary 2,885 2,281 2,240 1,054
Revival 3,336 2,564 2,480 1,089

Notes: AIC values for 28 binomial models in which the occurrence of building styles
(in rows) is explained by hedonic characteristics, location and time dummies (Column
1), augmented by the base ML predictor (Column 2), and the suggested spatial ML
predictor (Column 3 & 4). Across building styles, the AIC is lowest for the spatial
ML predictor, especially when uncertain predictions are omitted (Column 4). This
suggests that the spatial predictor performs best.

Figure 4: Difference of Fj-scores: spatial model vs. base model

O Spatial classifier B Spatial class., high conf. only B Base classifier

0.8

F1-Score

0.4

0.0

Georg. Early Vic. Late V./E. Interw. Postw. Cont. Revival
Notes: The bar plot shows differences in the F-scores per category for the classifiers

using both building level and neighbor information (dark and light blue) vs. a classifier
using building-level information only (red).
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Table 4: Prediction certainty: Herfindahl index from ensemble model

Architects

Georgian Early Vic. Late V. /Edw. Interwar Postwar Cont. Revival
Mean Herf. 0.88 0.80 0.79 0.77 0.68 0.70 0.70
ML Difference from correct classifications (diagonal), t-stats in parenthesis
Georgian - -0.21 (-9.87) -0.28 (-13.11) -0.33 (-9.95) -0.27 (-6.30) -0.25 (-7.97) -0.25 (-7.54)
Early Vic. -0.22 (-6.28) - -0.19 (-19.20) -0.31 (-13.70)  -0.21 (-10.05) -0.21 (-7.53) -0.15 (-3.84)
Late V./Edw. -0.36 (-5.89) -0.24 (-18.03) — -0.26 (-21.88) -0.23 (-9.08) -0.24 (-4.96) -0.16 (-4.33)
Interwar -0.12 (-1.55) -0.32 (-12.77) -0.24 (-19.87) - -0.13 (-22.67)  -0.25 (-12.58)  -0.16 (-6.49)
Postwar -0.51 (-33.71) -0.30 (-6.24) -0.36 (-13.13) -0.26 (-34.82) - -0.22 (-10.34) -0.24 (-7.70)
Cont. -0.44 (-3.31) -0.37 (-17.78) -0.38 (-17.63) -0.39 (-25.39) -0.18 (-15.67) - -0.19 (-7.71)
Revival -0.09 (-0.42) -0.40 (-20.64) -0.41 (-22.54) -0.31 (-19.71)  -0.28 (-24.06)  -0.22 (-12.40) -

Notes: For each ensemble classification ¢, we derive the Herfindahl scores as the sum of the squared share of votes from

individual models for each of the 7 styles s received, calculated as: Herf; = 25:7

s=1

(votess Jvotesq;)?. A high score indicates

high levels of consensus within the ensemble. The Herf. scores tend to be lower at off-diagonal cells, indicating lower

consensus for misclassifications.

Table 5: Mean Values for image quality variables, by style

Architects’ classifications

Share Blocked House Area

Window Area

Image Offset

Georgian 0.07
Early Vic. 0.06
Late V./Edw. 0.11
Interwar 0.19
Postwar 0.16
Cont. 0.09
Revival 0.10

0.81
0.86
0.84
0.70
0.64
0.72
0.78

0.15
0.16
0.17
0.11
0.07
0.11
0.11

0.07
0.05
0.08
0.12
0.11
0.09
0.09

Notes: Using an Inception/Resnet object detection model trained on Open Images, basic object on the images

are detected and the share of the image area taken up by cars, trees, buildings and windows are calculated.

Images not taken at an optimal angle or zoom factor are detected by calculating the offset between the bounding
box for the largest detected building and the center of the image.
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Table 6: Differences in photo characteristics by correctly and incorrectly classified images
ML Architects

Georgian Early Vic. Late V./Edw. Interwar Postwar Cont. Revival

Panel A: Total share of house blocked by vehicles or trees

Georgian - 0 (0.16) -0.03 (-1.37)  -0.07 (-2.16)  -0.06 (-0.91)  -0.02 (-0.86) 0.02 (0.39)
Early Vic. -0.04 (-2.80) - -0.04 (-7.42)  -0.11 (-8.26)  -0.09 (-5.45)  -0.03 (-1.97) 0.01 (0.47)
Late V./Edw. 0.03 (0.91) 0.03 (2.55) - 0.01 (0.40) 0.01 (0.57) 0.01 (0.17) 0.08 (1.89)
Interwar 0.17 (2.24) 0.11 (3.71) 0.09 (5.73) - 0.03 (4.16) 0.18 (4.42) 0.07 (2.40)
Postwar 0.13 (0.96) 0.03 (1.44) 0.11 (2.88)  -0.01 (-1.20) - 0.09 (3.39) 0.04 (1.09)
Cont. 0.16 (0.77)  -0.02 (-1.91) 0.03 (1.14)  -0.03 (-0.92)  -0.04 (-3.06) - -0.03 (-1.32)
Revival 0.18 (0.74) 0.03 (0.92) 0.01 (0.26)  -0.05 (-3.03)  -0.06 (-4.90) 0.04 (2.02) -
Panel B: Share of house area
Georgian ~  -0.11 (-3.43) -0.10 (-2.67) 0.09 (1.94) 0.10 (0.96) 0.11 (1.29)  -0.02 (-0.31)
Early Vic. 0.05 (1.30) - 0.03 (1.75) 0.07 (2.45) 0.18 (5.01) 0.12 (2.19) 0.05 (1.03)
Late V./Edw. -0.09 (-2.08) -0.07 (-3.10) - 0.02 (1.07) 0.08 (2.23)  -0.08 (-1.29) 0.04 (0.71)
Interwar 0.08 (0.55) -0.16 (-3.68) -0.14 (-6.48) - 0.03 (2.92) -0.04 (-1.03)  -0.09 (-2.65)
Postwar -0.33 (-1.98)  -0.24 (-3.82) -0.18 (-3.25)  -0.05 (-4.60) - -0.12 (-2.78)  -0.16 (-4.57)
Cont. -0.21 (-1.58)  -0.16 (-2.99) -0.15 (-3.45)  -0.02 (-0.55) 0.01 (0.23) =~ -0.06 (-1.43)
Revival -0.03 (-0.15)  -0.04 (-0.69) -0.11 (-2.70) 0.06 (2.51) 0.08 (3.30) 0.05 (1.30) -
Panel C: Share of window area
Georgian - -0.06 (-6.02) -0.02 (-1.10)  -0.02 (-1.92) 0.03 (1.26)  -0.03 (-1.28)  -0.01 (-0.42)
Early Vic. -0.01 (-0.60) -0.01 (-1.51) 0.03 (2.72) 0.04 (5.30) 0.01 (0.70) 0.02 (1.83)
Late V./Edw. 0 (0.09) -0.02 (-2.67) - 0.04 (4.85) 0.02 (1.81) 0.02 (0.98) 0.02 (1.59)
Interwar -0.03 (-0.92) -0.09 (-10) -0.08 (-13.20) - 0.01 (2.98) -0.03 (-2.41)  -0.03 (-3.48)
Postwar -0.07 (-4.42)  -0.09 (-5.80) -0.08 (-4.50)  -0.02 (-4.95) - -0.05 (-4.42)  -0.05 (-5.63)
Cont. -0.07 (-2.04)  -0.08 (-6.97) -0.05 (-3.73)  -0.01 (-1.46) 0.01 (2.50) - -0.02 (-2.58)
Revival -0.02 (-0.18)  -0.06 (-4.39) -0.03 (-1.71) 0.01 (1.04) 0.02 (2.50) -0.02 (-2.33) -
Panel D: Image offset
Georgian - 0.04 (5.44) 0.02 (2.61) -0.02 (-1.71)  -0.03 (-1.33) 0.01 (1) 0.01 (0.55)
Early Vic. 0.01 (0.64) - -0.02 (-6.59)  -0.03 (-3.82)  -0.04 (-4.98) -0.01 (-0.93) -0.03 (-2.78)
Late V./Edw. 0.04 (1.96) 0.03 (4.68) - -0.01 (-1.25)  -0.02 (-2.14) 0.01 (0.46) 0 (0.25)
Interwar 0.03 (1.16) 0.06 (6.28) 0.05 (9.75) - 0.01 (2.35) 0 (0.06) 0.03 (3.19)
Postwar 0.04 (1.07) 0.06 (3.31) 0.04 (3.37) 0 (1.11) - 0.02 (1.95) 0.06 (4.20)
Cont. 0.08 (2.11) 0.05 (3.87) 0.04 (3.40) -0.01 (-1.32) -0.02 (-4.26) - 0 (0.20)
Revival 0 (0.02) 0.03 (2.06) 0.01 (1) -0.01 (-1.85)  -0.01 (-1.02) 0.02 (2.22) -

Notes: Cross-tabulation of photo characteristics by ML and architects’ classifications. Off-diagonal elements (ML; —
Architects;) describe the difference in measure intensity between correctly and incorrectly classified photos for a given
classification by architects. For example, cell {Early Vic., Georgian} compares the mean characteristic value for the set of
photos which are actually Georgian but misclassified as Early Vic. to the set of correctly classified Georgian photos. T-stats
are in parenthesis.
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Table 7: Summary statistics residential property transactions

Statistic N Mean St. Dev. Min Pctl(25)  Pctl(75) Max

Price 15,369  256,806.40  168,364.40 10,000 130,000 331,000 1,000,000
Year 15,369 2,004.97 6.60 1,995 1,999 2,010 2,018
Volume (m?) 15,369 285.16 168.30 0.00 224.33 367.97 1,452.23
Area (m?) 15,369 61.47 22.49 30.12 46.03 70.45 199.57
Dist. city center (m) 15,369 2,314.00 924.52  528.40  1,571.10  2,895.54 4,916.95
New 15,369 0.03 0.17 0 0 0 1
Type: detached 15,369 0.09 0.29 0 0 0 1
Type: semi-detached 15,369 0.36 0.48 0 0 1 1
Type: terraced 15,369 0.55 0.50 0 0 1 1
Georgian 15,369 0.02 0.13 0 0 0 1
Early Vic. 15,369 0.18 0.39 0 0 0 1
Late Vic./Edw. 15,369 0.25 0.43 0 0 0 1
Interwar 15,369 0.32 0.46 0 0 1 1
Postwar 15,369 0.17 0.38 0 0 0 1
Contemporary 15,369 0.04 0.18 0 0 0 1
Revival 15,369 0.03 0.17 0 0 0 1
Neigh: Georgian 15,369 0.02 0.13 0 0 0 1
Neigh: Early Vic. 15,369 0.17 0.38 0 0 0 1
Neigh: Late V./Edw. 15,369 0.26 0.44 0 0 1 1
Neigh: Interwar 15,369 0.32 0.47 0 0 1 1
Neigh: Postwar 15,369 0.18 0.39 0 0 0 1
Neigh: Contemporary 15,369 0.03 0.16 0 0 0 1
Neigh: Revival 15,369 0.02 0.14 0 0 0 1

Notes: Summary statistics for a sample of 15,511 residential real estate transactions for the city of Cambridge (UK) between
1995 and 2018 where buildings could be matched with Google Street View images. The buildings’ floor plate (in m2) is
based on OS maps and the buildings’ volumes are estimated from digital elevation models (Lindenthal, 2017b). We control
for the location of each building by calculating the distance to the city center proxied by Great St. Mary’s Church, and

non-parametrically by using 69 location dummies (based on LSOA). Building styles based on ML classifications.
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Figure 5: Spatial distribution of house sales, by architectural styles
Late Vic./Ed. Interwar

Georgian Early Vic.

Notes: The locations of 15,369 housing transactions, styles classified by human experts, are marked by black dots.
Neighborhood boundaries in the background.
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Table 8: Hedonic Regression Estimates

Dependent variable: In(price)

(1) ) 3) @) 5) ©) M ®)
base true pred. high conf. misclass. new neigh. style X neigh

Constant 13.55%** 13.18%** 13.26%** 13.01%** 12.93*** 14.52%** 12.94%** 12.97***
(0.20) (0.20) (0.20) (0.22) (0.44) (1.67) (0.23) (0.23)

In(dist. city center) —0.52%** —0.44*** —0.48*** —0.44*** —0.41%** —0.62%** —0.43*** —0.43***
(0.03) (0.03) (0.03) (0.03) (0.06) (0.04) (0.03) (0.03)

Type: semi-detached —0.11%** —0.12%** —0.12%** —0.10*** —0.14*** 0.03 —0.10*** —0.10%**
(0.01) (0.01) (0.01) (0.01) (0.02) (0.04) (0.01) (0.01)

Type: terraced —0.16%** —0.19*** —0.18%** —0.17*** —0.16*** —0.004 —0.17*** —0.17***
(0.01) (0.01) (0.01) (0.01) (0.02) (0.08) (0.01) (0.01)

In(area) 0.41%** 0.39*** 0.40*** 0.41%** 0.41%** 0.34*** 0.41%** 0.41%**
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

In(volume) 0.01*** 0.01*** 0.01*** 0.01*** —0.004 0.01 0.01*** 0.01***
(0.001) (0.001) (0.001) (0.002) (0.004) (0.11) (0.002) (0.002)

New 0.19*** 0.10*** 0.18*** 0.10*** 0.13*** 0.09*** 0.08***
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)

Base: Contemporary

Georgian —0.04 0.07*** —0.08** —0.01 —0.08** —0.27***
(0.03) (0.02) (0.03) (0.05) (0.04) (0.05)

Early Vic. —0.13*** —0.01 —0.15%** —0.03 —0.11%** —0.11*
(0.02) (0.02) (0.02) (0.03) (0.02) (0.06)
Late Vic./Edw. 0.01 0.12%** 0.004 0.03 0.003 0.12
(0.02) (0.02) (0.02) (0.03) (0.02) (0.09)

Interwar —0.14*** —0.03** —0.18*** —0.04 —0.15%** —0.18%**
(0.02) (0.02) (0.02) (0.03) (0.02) (0.07)

Postwar —0.22%** —0.09*** —0.26*** —0.11%** —0.19*** —0.23%**
(0.02) (0.02) (0.02) (0.03) (0.02) (0.06)
Revival 0.04** 0.07*** 0.03 0.08** —0.06 0.02 0.07
(0.02) (0.02) (0.02) (0.03) (0.08) (0.03) (0.06)

Base: Neigh. Contemporary

Neigh: Georgian —0.001 —0.43***
(0.05) (0.07)

Neigh: Early Vic. —0.07** —0.12%**
(0.03) (0.04)

Neigh: Late V./Edw. —0.004 —0.12
(0.03) (0.10)
Neigh: Interwar —0.06** 0.01
(0.03) (0.05)

Neigh: Postwar —0.10*** —0.10**
(0.03) (0.05)
Neigh: Revival 0.01 0.05
(0.03) (0.04)
Year dummies Yes Yes Yes Yes Yes Yes Yes Yes
Neigh. dummies Yes Yes Yes Yes Yes Yes Yes Yes

Interaction terms No No No No No No No Table 9
Observations 15,369 15,369 15,369 11,627 3,063 317 11,627 11,627
Adjusted R? 0.87 0.88 0.88 0.89 0.87 0.93 0.89 0.89
RMSE 0.235 0.225 0.228 0.219 0.235 0.119 0.218 0.217

Notes: *p<0.1; **p<0.05; ***p<0.01. Standard errors are robust (White’s estimator). Models (2) and (6) are estimated

using the architects’ classifications only; (3) is based on ML observations that have been automatically classified, while (4),

(7) and (8) are based on high confidence ML predictions only; (5) uses architect’s classifications on the subset of data where
the architect and ML model style predictions match; (6) is estimated on sales of newly completed buildings. The interaction

terms for (8) are presented in Table 9.
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Table 9: Coeflicients interaction terms: Building and neighborhood style

Neigh. Building
Georg. Early Vic. Late V./Edw. Interw. Postw. Cont. Revival
Georg. 0.61%* 0.41 0.77%** N/A N/A - N/A
(0.27) (0.25) (0.28)
Early Vic. 0.27* 0.05 -0.11 0.03 0.10 - 0.07
(0.16) (0.11) (0.13) (0.10)  (0.11) (0.12)
Late V./Edw. 0.36%* 0.09 -0.01 0.15 0.06 - 0.10
(0.17)  (0.12) (0.14) (0.11)  (0.12) (0.14)
Interw. N/A -0.13 -0.17 -0.03 -0.03 - -0.10
(0.11) (0.13) (0.09)  (0.09) (0.11)
Postw. N/A 0.19 -0.19 0.03 0.05 - -0.11
(0.16) (0.14) (0.09)  (0.09) (0.12)
Cont. - - - - - - -
Revival N/A N/A -0.45%%* 0.10 -0.06 - -0.10
(0.16) (0.10)  (0.11) (0.11)

Notes: *p<0.1; **p<0.05; ***p<0.01. Standard errors are robust (White’s estimator). This table features the coefficients
for interaction terms of building style and neighborhood styles only, while Table 8, Column 8 presents all other coefficients
for this model.

Table 10: Counts: Building style and neighboring buildings’ style

Neigh. Building

Georg. Early Vic. Late V./Edw. Interw. Postw. Cont. Revival
Georgian 164 44 7 0 0 0 1
Early Vic. 20 2205 274 34 18 18 27
Late Vic./Edw. 22 473 3128 226 22 9 10
Interwar 7 47 176 4165 450 22 45
Postwar 1 10 25 553 2712 38 32
Contemporary 0 0 5 16 42 348 12
Revival 2 17 5 62 36 19 153

Notes: The style of direct neighborhoods is defined as the most frequently detected style on the same street, within 100m.

Table 11: Combined effect: Sum of direct, neighborhood and interaction coefficients

Neigh. Building
Georg. Early Vic. Late V./Edw. Interw. Postw. Cont. Revival

Georgian -0.09 -0.14 0.46 N/A N/A  -043 N/A
Early Vic. -0.11 -0.18 -0.11 -0.26 -0.25  -0.12 0.03
Late Vic./Edw.  -0.02 -0.14 0.00 -0.14 -0.29  -0.12 0.06
Interwar N/A -0.24 -0.04 -0.20 -0.25 0.01 -0.02
Postwar N/A -0.02 -0.17 -0.25 -0.29  -0.10 -0.14
Contemporary -0.27 -0.11 0.12 -0.18 -0.23 0.00 0.07
Revival N/A N/A -0.27 -0.03 -0.24 0.05 0.02

Notes: The combined effect of building styles on property values is calculated by adding up the direct, neighborhood, and
interaction effects (Table 9). A revival building surrounded by other revival buildings, for instance, commands no premium
over a contemporary building in a new neighborhood.
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Table 12:

Hedonic Regression Estimates - Year x Neighborhood Fixed effects

Dependent variable: In(price)

(1) @) 3) @) (5) (6) (7)
base true pred. high conf. misclass. neigh. style X neigh
Constant 13.55%** 13.21%** 13.25%** 13.01%** 13.30%** 12.90*** 12.89***
(0.24) (0.24) (0.23) (0.26) (0.64) (0.27) (0.27)
In(dist. city center) —0.50*** —0.44*** —0.47** —0.43*** —0.47** —0.41%** —0.41%**
(0.03) (0.03) (0.03) (0.03) (0.08) (0.03) (0.03)
Type: semi-detached —0.12%** —0.12%** —0.12%** —0.10*** —0.14*** —0.10*** —0.10***
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)
Type: terraced —0.16%** —0.19*** —0.19*** —0.16*** —0.16%** —0.16*** —0.17%**
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)
In(area) 0.41%** 0.39*** 0.40*** 0.41%** 0.42%** 0.41%** 0.41%**
(0.01) (0.01) (0.01) (0.01) (0.03) (0.01) (0.01)
In(volume) 0.01*** 0.01*** 0.01*** 0.01%** —0.01 0.01%** 0.01***
(0.002) (0.002) (0.002) (0.002) (0.004) (0.002) (0.002)
New 0.15%** 0.07*** 0.14*** 0.06* 0.17*** 0.05 0.03
(0.02) (0.02) (0.02) (0.03) (0.05) (0.03) (0.03)
Base: Contemporary
Georgian —0.02 0.08*** —0.08** —0.07 —0.09** —0.25%**
(0.03) (0.03) (0.03) (0.07) (0.04) (0.07)
Early Vic. —0.12%** 0.003 —0.14*** —0.06 —0.11%** —0.24***
(0.02) (0.02) (0.02) (0.04) (0.03) (0.07)
Late Vic./Edw. 0.03 0.14*** 0.02 0.002 0.01 0.17*
(0.02) (0.02) (0.02) (0.04) (0.03) (0.10)
Interwar —0.13*** —0.01 —0.17*** —0.05 —0.14*** —0.21%**
(0.02) (0.02) (0.02) (0.04) (0.02) (0.07)
Postwar —0.21%** —0.07*** —0.25%** —0.14*** —0.20*** —0.23%**
(0.02) (0.02) (0.02) (0.04) (0.02) (0.07)
Revival 0.06*** 0.10*** 0.05* 0.07 0.03 0.18***
(0.02) (0.02) (0.03) (0.05) (0.03) (0.07)
Base: Neigh. Contemporary
Neigh: Georgian 0.01 —0.68***
(0.05) (0.13)
Neigh: Early Vic. —0.06** —0.11**
(0.03) (0.05)
Neigh: Late V./Edw. 0.002 —0.06
(0.03) (0.11)
Neigh: Interwar —0.05* 0.02
(0.03) (0.05)
Neigh: Postwar —0.09*** —0.12%*
(0.03) (0.05)
Neigh: Revival 0.03 0.12**
(0.03) (0.05)
Year dummies Yes Yes Yes Yes Yes Yes Yes
Neigh. dummies Yes Yes Yes Yes Yes Yes Yes
Year x Neigh dummies Yes Yes Yes Yes Yes Yes Yes
Style Interaction terms No No No No No No Yes
Observations 15,369 15,369 15,369 11,627 3,063 11,627 11,627
Adjusted R? 0.87 0.88 0.88 0.89 0.88 0.89 0.89
RMSE 0.224 0.214 0.217 0.203 0.184 0.202 0.202

Notes: *p<0.1; **p<0.05; ***p<0.01. Standard errors are robust (White’s estimator). Model (2) and (6) are estimated
using the architects’ classifications; (3) is based on ML observations that have been automatically classified, while (4), (6)
and (7) are based on high confidence ML predictions only; (5) uses architect’s classifications on the subset of data where the
architect and ML model style predictions match.
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